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Abstract 

Object: Chronic kidney disease (CKD) is a worldwide public health problem with a high morbidity and mortality rate, as well as a risk factor 

for other illnesses. Clinicians may miss the disease because there are no apparent signs in the early stages of CKD. Early detection of CKD helps 

patients to get prompt therapy to reduce disease progression. Machine learning (ML) models, with their speedy and accurate detection 

capabilities, can successfully assist physicians in achieving this goal. Given that ML models are considered "black boxes," it is also required to 

reveal the significant factors that led a model to anticipate a specific outcome. In this article, using CKD open access data, the ML model is 

interpreted with the Shapley Additive explanations (SHAP) explainable artificial intelligence (XAI) method, which is based on fair profit 

distribution depending on the contributions of many stakeholders. 

Method: In this study, the open-access dataset named "Chronic Kidney Disease" includes 400 patients with and without CKD. ML classifiers 

are employed in this article to predict if the patient has CKD or not. In this article, four tree-based ML classifiers (decision tree, AdaBoost, 

XGBoost, and Random forest -RF) are used to predict whether the patient has chronic kidney disease (CKD). The RF model achieved the best 

performance among tree-based ML models with 99.00% prediction accuracy. The SHAP method, an explainable approach, was used for local 

and global explanations of the RF model's decisions. In the modeling process, the 10-fold cross-validation technique was used, and the dataset 

was split into 80% training and 20% testing. Datasets. The accuracy (ACC), balanced accuracy (b-ACC), specificity (SP), sensitivity (SE), 

negative predictive value (npv), positive predictive value (PPV), and F1-score metrics were used to evaluate the model. 

Results: The RF technique of modeling yielded performance metrics for ACC, b-ACC, SE, SP, PPV, npv, and F1-score, which were 99.0%, 

98.6%, 97.3%, 100%,100%, 98.4%, 98.6%, and respectively. According to the variable importance result obtained from the SHAP method, 

Hemo, Sg, Al, Sc, and Rbcc variables are the five most influential variables in predicting CKD/Not CKD. 

Conclusion: With the current study, CKD was predicted, and the risk factors that may impact CKD were given with the SHAP model to shed 

light on the interpretation part that is a problem for users after modeling. With SHAP used after ML, the results are presented individually and 

globally. This helps clinicians intuitively understand the model results. 

Keywords: Chronic kidney disease, classification, machine learning, explainable artificial intelligence, risk factor, Shapley Additive 

Explanations 

 

Introduction 

Chronic Kidney Disease (CKD), also known as chronic renal disease, 

is a long-term medical disorder in which the kidneys gradually lose 

their function. The kidneys filter waste and excess fluids from the 

circulation, ultimately expelled as urine. When the kidneys are injured 

or compromised, waste and fluids accumulate in the body, resulting 

in various issues [1]. Globally, CKD is a significant public health 

issue, especially in low- and middle-income nations where millions 

of individuals lose their lives to treatment-related complications. 14% 

of people globally suffer from CKD, making it a serious issue. Today, 

more than 2 million people need dialysis or a kidney transplant to 

survive, although this number may only represent 10% of those who 

need medical attention [2]. 

Two fundamental methods are used by medical professionals to 

gather precise patient information to identify kidney disease. Initially, 

testing for CKD is performed on the patient using both urine and 

blood. A blood test can measure the glomerular filtration rate (GFR), 

which measures renal function. Normal kidney function is indicated 
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by a GFR of 60; poor renal function is indicated by values between 

15 and 60. Finally, a GFR of 15 or below shows kidney failure. The 

second technique, urinalysis, checks for albumin, which can be seen 

in urine when the kidneys are not operating correctly [3]. Early 

detection is critical for lowering CKD mortality rates. Late diagnosis 

of this illness causes renal failure, necessitating dialysis or kidney 

transplantation [4]. The expanding number of CKD patients, along 

with a need for more trained physicians, has resulted in expensive 

diagnostic and treatment expenses. Computer-assisted diagnostic 

technologies, particularly in developing nations, are required to aid 

radiologists and doctors in diagnostic decision-making [5]. 

In such cases, computer-aided diagnostics can be essential in 

determining the disease's prognosis early and efficiently. ML 

methods, a subdomain of artificial intelligence (AI), may be used to 

identify a disease accurately. These methods are intended to help 

clinical decision-makers undertake more accurate illness 

categorization. ML is becoming more important in healthcare 

diagnostics because it allows for comprehensive analysis, reducing 

human mistakes, and increasing forecast precision. ML algorithms 

and classifiers are increasingly regarded as the most reliable 

approaches for predicting illnesses such as heart disease, diabetes, 

tumor disease, and liver disease [6]. 

The vast majority of ML models are regarded as "black boxes." A 

black-box model is so complex that it cannot be easily comprehended 

by humans [7,8]. It is difficult for clinicians to grasp what caused the 

black box model to anticipate a given outcome when utilizing it as a 

diagnostic method. From the standpoint of clinicians and patients 

[9,10], black box techniques impede medical decision support. As a 

result, it is required to create a diagnostic system that ensures the 

interpretability of the ML model [7,9,11]. The ML model's 

interpretability increases the doctors' trust in the system by providing 

a safety check on the expected outcomes. Research interest in the field 

of XAI has expanded recently to solve the ML model's interpretability 

[12,13]. 

In this article, SHAP, one of the XAI methods, was used for the 

interpretability of the ML model. SHAP is a prominent and frequently 

used ML and interpretability approach. It is intended to explain the 

output of ML models by attributing a specific instance's prediction to 

its unique attributes, hence offering insights into the model's decision- 

making process [14]. SHAP is based on cooperative game theory and 

the Shapley values idea. Shapley values assign a value to each 

characteristic based on how well it predicts. It computes how much 

each feature "contributes" to the difference in prediction between the 

model and the expected prediction [15]. 

The purpose of current research is to create an automated interpretable 

CKD diagnosis system that displays the priority of the variables that 

impacted the system's decision to diagnose CKD or not. The CKD 

diagnostic system, an interpretable ML model employing SHAP, and 

an evaluation of the attribute contribution to CKD prediction are the 

main contributions of this article. 

The remainder of the article is organized as follows. The 

"Methodology" section describes the dataset, classification methods, 

SHAP, and performance metrics. In the Results section, the detailed 

results of the classification methods used and the RF classification 

method, and the findings we obtained from the SHAP analysis are 

presented respectively. Explanations about the results are made in the 

"Discussion" section. 

 
Methodology 

Dataset 

The "Chronic Kidney Disease" open access dataset was taken from 

https://www.kaggle.com/abhia1999/chronic-kidneydisease.The CKD 

Data set contains 14 characteristics of 400 patients. Of the 400 

patients, 250 (62.5%) are CKD patients and 150 (37.5%) are not CKD 

patients. 

Table 1 lists the 14 independent variables in the CKD dataset, 

including 1 dependent variable and their explanations. 

 

Table 1: Descriptions of variables included in the CKD dataset 
 

Abbreviation of the variable Name of Variable Variable type 

Bp Blood Pressure Numerical 

Al Albumin Numerical 

Sg Specific Gravity Numerical 

Su Sugar Numerical 

Al Albumin Numerical 

Rbc Red Blood Cell Numerical 

Sc Serum Creatinine Numerical 

Bu Blood Urea Numerical 

Sod Sodium Numerical 

Wbcc White Blood Cell Count Numerical 

Hemo Hemoglobin Numerical 

Rbcc Red Blood Cell Count Numerical 

http://www.kaggle.com/abhia1999/chronic-kidneydisease.The
http://www.kaggle.com/abhia1999/chronic-kidneydisease.The
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Pot Potassium Numerical 

Htn Hypertension Numerical 

Class (CKD, Not CKD) Predicted Class Categorical 

 

Classifier 

This part explains the ML methods we used to classify the CKD 

dataset. The classifiers are types of ML algorithm that categorizes 

input into predefined classifications. In this case, the classifier will 

utilize the patient's attributes as input to identify whether or not the 

patient has CKD. 

Random Forest, Adaptive Boosting, Decision Tree, and Extreme 

Gradient Boosting tree-based ML methods were used to predict 

whether the patient had CKD. 

Decision Tree (DT) 

DT was first proposed by Breiman et al. [16]. Classification of data 

using this method is performed in two stages. The first stage is called 

the learning stage, and the second stage is called the test data stage. 

In the learning phase, a known learning data set is identified by the 

classification algorithm to create a model. The learned model 

generates classification rules and is expressed as a decision tree. The 

test data phase is used to assess the classification rules' correctness. If 

the classification rules' accuracy is adequate, the resulting rules can 

be utilized to categorize the new data [17]. 

Adaptive Boosting (AdaBoost) 

AdaBoost is a Boosting technique used as an ensemble accelerator 

classifier in ML, proposed by Robert Schapire and Yoav Freund in 

1996. The Adaboost approach works by adjusting the classifier 

weights and training the data sample at each iteration to offer accurate 

predictions of observations. The steps of the working principle of the 

Adaboost algorithm are as follows. First, Adaboost randomly selects 

a training subset. Based on the accurate prediction of the final 

training, it determines the training set and trains the AdaBoost ML 

model iteratively. Misclassified observations are assigned higher 

weights so that in the next iteration, these observations have a higher 

probability of classification. It also gives importance to the trained 

classifier at each step based on the accuracy of the classifier. The more 

accurate classifier will receive a higher weight. This process is 

repeated until all training data is fitted without errors or the 

maximum number of predictors is reached [18]. 

Extreme Gradient Boosting (XGBoost) 

XGBoost is a supervised learning technique that uses gradient 

boosting machines (GBM), one of the most powerful supervised 

learning algorithms. GBM and DT algorithms serve as the foundation 

of its basic architecture. It performs and moves faster than other 

algorithms, which is a significant benefit. Additionally, XGBoost is 

ten times quicker than competing algorithms, has a high level of 

predictive ability, and incorporates several regularizations that 

enhance performance overall while lowering overfitting or 

overlearning. A series of weak classifiers are combined with boosting 

in a technique known as gradient boosting to produce a robust 

classifier. The strong learner is progressively trained, beginning with 

a primary learner. The underlying ideas behind XGBoost and gradient 

boosting are identical. The implementation specifics are where the 

main variances lie. XGBoost can improve performance by using a 

variety of regularization approaches while managing the complexity 

of the trees [19]. 

Random Forest 

Breiman (2001) introduced the random forest approach, a machine 

learning algorithm combining Bagging and Random Subspaces 

techniques. It consists of many decision trees. The RF method 

combines the calculations of many decision trees to provide a 

conclusion. It is a supervised machine-learning technique. It is well- 

liked since it is straightforward but efficient. Due to its versatility and 

ease of use, it has often been used for solving regression and 

classification issues [20]. The dataset is initially randomly separated 

into two portions in the RF algorithm: training data for learning and 

validation data to assess the level of learning. Following that, the 

"bootstrap method" is used to build multiple decision trees at random 

from the dataset. Each tree's branching is governed by randomly 

selected determinants at node positions. The RF forecast is the 

average of all the tree's results. 

As a consequence, each tree influences the RF prediction for specific 

weights. Because of its capacity to randomly accept training data from 

subsets and generate trees using random ways, the RF algorithm 

outperforms other machine learning algorithms. Furthermore, 

because the RF technique trains on different randomly selected 

subsets of data via bootstrap sampling, the amount of overfitting is 

maintained [21]. 

SHAP 

SHAP is a model-agnostic game theory-inspired method that attempts 

to increase interpretability by calculating the importance values for 

each characteristic for individual predictions. For each prediction, the 

SHAP computes an additive feature importance score that maintains 

three desirable properties: missingness, consistency, and local 

accuracy [12]. The SHAP helps describe and illustrate how a feature 

value may be used to forecast using SHAP values. The SHAP values 

give a dynamic perspective of the effects of feature interaction in 

calculating risk probability and the unique importance of each 

attribute. Furthermore, the SHAP allows you to present and explain 

the qualities in charge of prediction at both the local and global levels 

[22]. 

Performance metrics 

In this study, performance metrics ACC, b-ACC, SE, SP, PPV, npv, 

and F1 score are the measurement approaches used to measure how 
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well the classification ML model performs. ACC has been used to 

measure the effectiveness of tree-based models. 

Python 3.6.5 (sklearn, Decision tree, AdaBoost, Random Forest, 

XGBoost, and sharp packages) was used for all analyses and 

computations. 

The data is divided into 80% training and 20% test data. To confirm 

model validity, the n-fold cross-validation approach, one of the 

resampling methods, was used in this study. In • The dataset is first 

divided into n pieces, and the model is then applied to those pieces. • 

In the second step, one of the n parts is used for testing, while the 

remaining n-1 parts are used for training. • Finally, the cross- 

validation approach is evaluated using the average values collected 

from the models. 

The workflow diagram for the development of the dataset to be used 

in the study and the modeling process to be applied is given in Figure 

1. 

 

 

 

 
 

Figure 1: The workflow diagram. 
 

 

Results 

In this study, 4 classification models were used for training. These are 

XGBoost, AdaBoost, RF, and DT classification methods. The dataset 

was randomly split into three parts: 80% training data and 20% test 

data. 

 
 

Table 1 shows the values of the performance measures derived by 

modeling with ML methods using person's CKD and not CKD. 
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Table 1: Performance metrics values obtained after modeling. 
 

ML Methods ACC Value (%) 

Decision Tree 96.25 

Random Forest 99.0 

AdaBoost 98.125 

XGBoost 98.75 

ML: Machine Learning; ACC: Accuracy 

Among the DT, AdaBoost, XGBoost and RF ML models used in the study, the RF model showed the best performance in terms of test accuracy. 

The results of the performance metrics obtained from the RF model are given in Table 2. 

 
Table 2: Performance metrics values obtained after modeling of RF 

 

Performance Metrics Performance Metrics Value (%) 

ACC 99.0 

b-ACC 98.6 

SE 97.3 

SP 100 

ppv 100 

npv 98.4 

F1-score 98.6 

ACC: Accuracy; b-ACC: Balanced accuracy; SP: Specificity; SE: Sensitivity; npv: Negative predictive value; ppv: Positive predictive value 

The SHAP variable importance graph showing the effect of each variable on the target variable is given in Figure 2. 

 
 

Figure 2: SHAP variable significance plot 

Figure 3A and Figure 3B show the Beeswarm SHAP plots, which indicates in which direction (positive/negative) and in what proportion 

(magnitude/smallness) each variable is effective in explaining the target variable (CKD/not CKD). Figure 3A shows the results for the not CKD 

category while Figure 3B shows the results for the ckd category. When the graphs are analyzed, it is seen that the two graphs obtained are inverted 

in terms of direction and values when the categories change. 
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Figure 3(A) SHAP Beeswarm Plot 
 

Figure 3(B) SHAP Beeswarm Plot 

 
 

Figure 2, Figure 3A and Figure 3B above are graphs that can be used for global interpretation of explainable AI models and show the contributions 

of variables to the target variable by considering all observations. Explainable AI models also allow for individual interpretation. While some 

models only allow for individual interpretations, some models allow for both global and local interpretations. 
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Figure 4A and Figure 4B show the local interpretation results of the SHAP method that allows both interpretations. Figure 4A and Figure 4B 

SHAP force graphs are given. Figure 4A and Figure 4B are inverted versions of each other and present local explanations for each individual 

according to the categories of the target variable. 

 
 

Figure 4(A) SHAP Force Plot 
 

 

Figure 4(B) SHAP Force Plot 

 

The SHAP method decision graphs demonstrate how total estimations 

vary during the decision-making process. On the Y-axis, 

characteristics are listed in order of contribution. The model's output 

is represented on the X-axis. The SHAP value of each feature is 

totaled for the base value of the model while going from the bottom 

to the top of the plot to produce the final output value, as in the SHAP 

summary plot. As a result, it is feasible to identify how much each 

 

 

characteristic contributes to the outcome throughout the total 

estimating process. 

SHAP decision graphs are given in Figure 5A and Figure 5B. Figure 

5A and Figure 5B are reversed and present local explanations for each 

individual according to the categories of the target variable. Figure 

5A shows how much individual characteristics contribute to the 

model prediction of the grade as CKD. Figure 5B shows how much 

individual characteristics contribute to the model prediction as CKD. 
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Figure 5(A) 

 
 

Figure 5(B) 
 

Discussion 

CKD is a kind of kidney disease in which the glomerular filtration 

rate (GFR) gradually declines over three months [23]. Because there 

are no physical indications in the early stages, it is a silent killer. In 

2016, 753 million individuals worldwide were impacted by CKD 

[24]. Every year, over 1 million individuals in 112 impoverished 

countries die from renal failure because they cannot afford the high 

cost of frequent dialysis or kidney replacement operations. To lessen 

 
 

the burden of CKD on public health, early identification, and effective 

treatments are critical [25]. The timeline for routine health checkups 

varies per country due to changing economic situations. Even within 

the same country, various populations receive different degrees of 

health screening. In most nations, a complete routine health 

examination, especially for the diagnosis of frequent deadly illnesses 

such as cancer and heart disease, is uncommon. Only when there is a 
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clinical problem are CKD tests undertaken, and by then, it is too late 

[26]. 

Early detection of CKD patients who are at a high risk of developing 

clinical deterioration is essential because it may help with the 

provision of the proper care and the economical use of the little 

resources available [27]. Therefore, creating predictive models that 

can reliably predict whether an individual is ill may aid clinical 

practice. ML algorithms have the potential to reduce the risk of CKD- 

related death in critically sick patients due to their capacity to analyze 

massive volumes of data from electronic health records. These may 

include demographic data, treatments, measures that are taken 

regularly, and patient diagnoses. These state-of-the-art data-driven 

algorithms are capable of handling high-dimensional data, evaluating 

intricate connections, and locating essential outcome predictors. 

Compared to traditional modeling approaches, which employ 

variables primarily selected for their statistical or clinical relevance 

and demand that predictors be independent of one another, they are 

more flexible. [28,29]. ML techniques have been widely used in 

illness prediction in recent years. Clinicians may more effectively 

screen for and identify patients at high risk of unfavorable outcomes 

with the help of a well-designed prediction model, enabling more 

prompt intervention and better results [30,31]. 

Furthermore, there needs to be more information regarding its 

usefulness in a real-world clinical setting and in explainable risk 

prediction models to support illness prognosis despite earlier research 

demonstrating encouraging outcomes [32,33]. The "black-box" 

nature of machine learning algorithms makes it challenging to justify 

the assumptions that underlie individual patient forecasts, i.e., the 

particular patient characteristics that contribute to a specific 

prognosis. One of the main obstacles to ML deployment in the 

medical field is the lack of an intuitive grasp of ML models, which 

has so far restricted the application of more potent ML techniques in 

medical decision support due to their lack of interpretability [34,35]. 

This study used an advanced machine learning algorithm with a 

SHAP-based architecture to overcome these drawbacks. 

Consequently, this study not only improved the ML model's 

predictive accuracy for CKD prediction, but it also offered heuristic 

explanations that assisted patients in anticipating risk. This made it 

easier for medical professionals to comprehend how to make 

decisions about how serious an illness is and how to increase the 

likelihood of early intervention. 

The outputs of the SHAP graphs obtained in the current study are 

given in detail below. According to the SHAP variable importance 

graph (Figure 2), Hemo, Sg, Al, Sc, and Rbcc are the five most 

influential variables in predicting CKD/Not CKD (target variable). 

According to the Beeswarm SHAP graphs (Figure 3A, Figure 3B), 

since high SHAP values of Hemo and Sg variables show a negative 

trend, they will have a negative effect in explaining the target variable 

and support grade CKD. In other words, while high Hemo values are 

associated with grade CKD, on the contrary, low Hemo values will be 

related to the CKD category. In the same way, high values of the Sg 

variable will show a negative trend and affect the target variable in 

the opposite direction, and low values of the Sg variable will be 

associated with CKD. The relationships of the other variables in the 

graph with the target variable are interpreted similarly. The SHAP 

force plots in Figure 4A and Figure 4B show the local results of the 

first patient in the test data. Figure 4A explains the not CKD category, 

and Figure 4B for the CKD category. Figure 4B shows that 

Hemo=11.5, Sc=3.07, Rbcc=4.71, and Sod=137.53 of the first patient 

in the test data have a positive contribution to being not CKD. 

On the other hand, Al=0.0, Sg=1.02, and Htn=0.0 values of the first 

patient in the test data have a negative contribution to CKD. In 

addition, the SHAP method predicted that this patient had CKD with 

a 90% probability. According to the findings obtained from SHAP 

decision graphs (Figure 5A, Figure 5B), the order of the variables 

that make the most significant contribution to the overall prediction 

is as follows: Hemo, Sg, Al, Sc, Rbcc. 

The results obtained from this study support the literature. With this 

study, a significant step forward has been taken for ML in medicine. 

It will also help develop interpretable and personalized risk prediction 

models. 

The results obtained from this study support the literature. However, 

there are limited studies in the literature on methods that will bring 

transparency to black box models that can predict CKD, that is, shed 

light on how and why a particular decision is made. Thus, with this 

study, a significant step forward has been taken for ML and XAI 

models in medicine by contributing to the literature on this subject. It 

will also help develop interpretable and personalized risk prediction 

models. 
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